Recruitment of toxin-like proteins with ancestral venom function supports endoparasitic lifestyles of Myxozoa [PeerJ]

Por um escritor misterioso
Last updated 11 abril 2025
Recruitment of toxin-like proteins with ancestral venom function supports  endoparasitic lifestyles of Myxozoa [PeerJ]
Cnidarians are the oldest lineage of venomous animals and use nematocysts to discharge toxins. Whether venom toxins have been recruited to support parasitic lifestyles in the Endocnidozoa (Myxozoa + Polypodium) is, however, unknown. To examine this issue we variously employed transcriptomic, proteomic, associated molecular phylogenies, and localisation studies on representative primitive and derived myxozoans (Malacosporea and Myxosporea, respectively), Polypodium hydriforme, and the free-living staurozoan Calvadosia cruxmelitensis. Our transcriptomics and proteomics analyses provide evidence for expression and translation of venom toxin homologs in myxozoans. Phylogenetic placement of Kunitz type serine protease inhibitors and phospholipase A2 enzymes reveals modification of toxins inherited from ancestral free-living cnidarian toxins, and that venom diversity is reduced in myxozoans concordant with their reduced genome sizes. Various phylogenetic analyses of the Kunitz-type toxin family in Endocnidozoa suggested lineage-specific gene duplications, which offers a possible mechanism for enhancing toxin diversification. Toxin localisation in the malacosporean Buddenbrockia plumatellae substantiates toxin translation and thus illustrates a repurposing of toxin function for endoparasite development and interactions with hosts, rather than for prey capture or defence. Whether myxozoan venom candidates are expressed in transmission stages (e.g. in nematocysts or secretory vesicles) requires further investigation.
Recruitment of toxin-like proteins with ancestral venom function supports  endoparasitic lifestyles of Myxozoa [PeerJ]
Comparison of Conotoxin Transcripts for C. sponsalis. Number of
Recruitment of toxin-like proteins with ancestral venom function supports  endoparasitic lifestyles of Myxozoa [PeerJ]
PeerJ - the Journal of Life & Environment on X: Recruitment of toxin-like proteins with ancestral #venom function supports endoparasitic lifestyles of Myxozoa Read the full article @NHM_London @KingsCollegeLon @usponline
Recruitment of toxin-like proteins with ancestral venom function supports  endoparasitic lifestyles of Myxozoa [PeerJ]
Domain loss enabled evolution of novel functions in the snake three-finger toxin gene superfamily
Recruitment of toxin-like proteins with ancestral venom function supports  endoparasitic lifestyles of Myxozoa [PeerJ]
Liam Doonan - Technical expert: Toxicogenomics - Syngenta
Recruitment of toxin-like proteins with ancestral venom function supports  endoparasitic lifestyles of Myxozoa [PeerJ]
PeerJ - King's College London, University of London Account Page
Recruitment of toxin-like proteins with ancestral venom function supports  endoparasitic lifestyles of Myxozoa [PeerJ]
PDF] Tissue-Specific Venom Composition and Differential Gene Expression in Sea Anemones
Recruitment of toxin-like proteins with ancestral venom function supports  endoparasitic lifestyles of Myxozoa [PeerJ]
Apoptotic gene loss in Cnidaria is associated with transition to parasitism
Recruitment of toxin-like proteins with ancestral venom function supports  endoparasitic lifestyles of Myxozoa [PeerJ]
PDF] Tentacle Transcriptome and Venom Proteome of the Pacific Sea Nettle, Chrysaora fuscescens (Cnidaria: Scyphozoa)
Recruitment of toxin-like proteins with ancestral venom function supports  endoparasitic lifestyles of Myxozoa [PeerJ]
PDF) Genomic insights into the evolutionary origin of Myxozoa within Cnidaria
Recruitment of toxin-like proteins with ancestral venom function supports  endoparasitic lifestyles of Myxozoa [PeerJ]
PDF] Tissue-Specific Venom Composition and Differential Gene Expression in Sea Anemones
Recruitment of toxin-like proteins with ancestral venom function supports  endoparasitic lifestyles of Myxozoa [PeerJ]
PDF] Tentacle Transcriptome and Venom Proteome of the Pacific Sea Nettle, Chrysaora fuscescens (Cnidaria: Scyphozoa)

© 2014-2025 trend-media.tv. All rights reserved.